Dynamic pressure change - SF Pressure Drop Help

SF Pressure Drop
Help
Go to content
Principles > Technical terms
Dynamic pressure change

In enlarging or contracting pipes the following pressure changes are existing:

1. Pressure drop caused by friction, turbulences and flow separation:
dP = resistance coefficient x density/2 x velocity²

2. Pressure change caused by changes of kinetic energy acc. Bernoulli formula:
dP = density * (velocity1² - velocity2²)/2.
For enlargements the pressure change is positiv, for contractions negativ.

The element "Dyn. pressure change" calculates the static pressure changes caused by changes of kinetic energy. Normally you input the dimension of begin and end of the whole pipe.

Attention: The calculated data are output as pressure drop, i.e. if the output is negativ the pressure is encreasing, if the output is positiv the pressure is decreasing.

In previous program versions (< version 6.25) these pressure changes were calculated in combination with pipe enlargements and contractions.

Correlation: Static pressure, dynamic pressure and total pressure and calculation example

(Pressure changes caused by friction, turbulences and vertical difference of pipe are not considered.)



In flows the following pressures are existing:

  • static or hydrostatic pressure p_stat
  • dynamic or velocity pressure p_dyn

The static pressure is static relative to the moving fluid and can be measured through a flat opening in parallel to the flow (pressure gauge).

The dynamic pressure is caused by kinetic energy, measurement method pitot-static tube.

The summary of static and dynamic pressure is the total pressure. It is measured by a Pitot tube.

According the formula of Bernoulli the sum of static and dynamic pressure is constant:

p_total1 = p_total2 = constant

p_stat1 + p_dyn1 = p_stat2 + p_dyn2 = constant

Die kinetic energy of the flow is called dynamic or velocity pressure. The following formula is valid:

p_dyn = density/2 x velocity²

Calculation example:

Back to content